3,737 research outputs found

    A feedback based solution to emulate hidden terminals in wireless networks

    Get PDF
    Mobile wireless emulation allows the test of real applications and transport protocols over a wired network mimicking the behavior of a mobile wireless network (nodes mobility, radio signal propagation and specific communication protocols). Two-stage IP-level network emulation consists in using a dedicated offline simulation stage to compute an IPlevel emulation scenario, which is played subsequently in the emulation stage. While this type of emulation allows the use of accurate computation models together with a large number of nodes, it currently does not allow to deal with dynamic changes of the real traffic. This lack of reactivity makes it impossible to emulate specific wireless behaviors such as hidden terminals in a realistic way. In this paper we address the need to take into account the real traffic during the emulation stage and we introduce a feedback mechanism. During the simulation several emulation scenarios are computed, each scenario corresponding to alternative traffic conditions related to e.g. occurrence or not of hidden terminals. During the emulation stage, the traffic is observed and the currently played emulation scenario can be changed according to specific network conditions. We propose a solution based on multiple scenarios generation, traffic observers and a feedback mechanism to add a trafficbased dynamic behavior to a two-stage emulation platform. The solution will be illustrated with a simple experiment based on hidden terminals

    An opportunistic indoors positioning scheme based on estimated positions

    Get PDF
    The localization requirements for mobile nodes in wireless (sensor) networks are increasing. However, most research works are based on range measurements between nodes which are often oversensitive to the measurement error. In this paper we propose a location estimation scheme based on moving nodes that opportunistically exchange known positions. The user couples a linear matrix inequality (LMI) method with a barycenter computation to estimate its position. Simulations have shown that the accuracy of the estimation increases when the number of known positions increases, the radio range decreases and the node speeds increase. The proposed method only depends on a maximum RSS threshold to take into account a known position, which makes it robust and easy to implement. To obtain an accuracy of 1 meter, a user may have to wait at the same position for 5 minutes, with 8 pedestrians moving within range on average

    Understanding and modeling the small-world phenomenon in dynamic networks

    Get PDF
    The small-world phenomenon first introduced in the context of static graphs consists of graphs with high clustering coefficient and low shortest path length. This is an intrinsic property of many real complex static networks. Recent research has shown that this structure is also observable in dynamic networks but how it emerges remains an open problem. In this paper, we propose a model capable of capturing the small-world behavior observed in various real traces. We then study information diffusion in such small-world networks. Analytical and simulation results with epidemic model show that the small-world structure increases dramatically the information spreading speed in dynamic networks

    A generic communication architecture for end to end mobility management in the Internet

    Get PDF
    The proliferation of laptops, cellular phones, and other mobile computing platforms connected to the Internet has triggered numerous research works into mobile networking. The increasingly dense set of wireless access networks that can be potentially accessed by mobile users open the door to an era of pervasive computing. However, the puzzle of wireless access networks that tends to become the natural access networks to the Internet pushes legacy“wireoriented” communication architectures to their limit. Indeed, there is a critical gap between the increasingly used stream centric multimedia applications and the incapacity of legacy communication stacks to insure the continuity of these multimedia sessions for mobile users. This paper proposes a generic communication architecture (i.e. not dedicated to a specific protocol or technology) that aims to fill the gap between the application layer continuity needs and the discontinuity of the communication service inherent to the physical layer of wireless mobile networks. This paper introduces an end to end communication architecture that preserves efficiently session continuity in the context of mobile and wireless networks. This architecture is mainly based on end to end mechanisms that could be integrated into a new generation reconfigurable transport protocol. The proposed contribution efficiently satisfies mobility requirements such as efficient location management, fast handover, and continuous connection support

    Mobile TFRC: a congestion control for WLANs

    Get PDF
    Based on an identification and evaluation of the subtle counterproductive interactions between the WLANs MAC layer and the transport layer, this paper shows a new approach towards congestion control for WLANs. We introduce a specialization of TFRC (MTFRC: Mobile TFRC), which is adapted to wireless access networks. This TFRC specialization requires only slight changes to the standard TFRC protocol. Simulation results show substantial improvements for applications over TFRC in scenarios where the bottleneck situates on the MAC layer of the mobile nodes

    Two-stage wireless network emulation

    Get PDF
    Testing and deploying mobile wireless networks and applications are very challenging tasks, due to the network size and administration as well as node mobility management. Well known simulation tools provide a more flexible environment but they do not run in real time and they rely on models of the developed system rather than on the system itself. Emulation is a hybrid approach allowing real application and traffic to be run over a simulated network, at the expense of accuracy when the number of nodes is too important. In this paper, emulation is split in two stages : first, the simulation of network conditions is precomputed so that it does not undergo real-time constraints that decrease its accuracy ; second, real applications and traffic are run on an emulation platform where the precomputed events are scheduled in soft real-time. This allows the use of accurate models for node mobility, radio signal propagation and communication stacks. An example shows that a simple situation can be simply tested with real applications and traffic while relying on accurate models. The consistency between the simulation results and the emulated conditions is also illustrated

    A novel middleware for the mobility management over the Internet

    Get PDF
    The features of mobility, which enormously impact on how communication is evolving into the future, represent a particular challenge in today’s wireless networking research. After an identification and evaluation of the gap between the discontinuities of the communication service inherent to the physical layer of mobile networks and the continuity requirements issue from the stream centric multimedia applications, we propose a novel middleware 3MOI (Middleware for the Mobility Management Over the Internet) which can perform efficient and context-aware mobility management and satisfy new mobility requirements such as dynamical location management, fast handover, and continuous connection support

    W-NINE: a two-stage emulation platform for mobile and wireless systems

    Get PDF
    More and more applications and protocols are now running on wireless networks. Testing the implementation of such applications and protocols is a real challenge as the position of the mobile terminals and environmental effects strongly affect the overall performance. Network emulation is often perceived as a good trade-off between experiments on operational wireless networks and discrete-event simulations on Opnet or ns-2. However, ensuring repeatability and realism in network emulation while taking into account mobility in a wireless environment is very difficult. This paper proposes a network emulation platform, called W-NINE, based on off-line computations preceding online pattern-based traffic shaping. The underlying concepts of repeatability, dynamicity, accuracy and realism are defined in the emulation context. Two different simple case studies illustrate the validity of our approach with respect to these concepts

    SPAD: a distributed middleware architecture for QoS enhanced alternate path discovery

    Get PDF
    In the next generation Internet, the network will evolve from a plain communication medium into one that provides endless services to the users. These services will be composed of multiple cooperative distributed application elements. We name these services overlay applications. The cooperative application elements within an overlay application will build a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS experienced on the communication paths of the corresponding overlay association. In this paper, we present SPAD (Super-Peer Alternate path Discovery), a distributed middleware architecture that aims at providing enhanced QoS between end-points within an overlay association. To achieve this goal, SPAD provides a complete scheme to discover and utilize composite alternate end-to end paths with better QoS than the path given by the default IP routing mechanisms

    Swarm-based Intelligent Routing (SIR) - a new approach for efficient routing in content centric delay tolerant networks

    Get PDF
    This paper introduces Swarm-based Intelligent Routing (SIR), a swarm intelligence based approach used for routing content in content centric Pocket Switched Networks. We first formalize the notion of optimal path in DTN, then introduce a swarm intelligence based routing protocol adapted to content centric DTN that use a publish/subscribe communication paradigm. The protocol works in a fully decentralized way in which nodes do not have any knowledge about the global topology. Nodes, via opportunistic contacts, update utility functions which synthesizes their spatio-temporal proximity from the content subscribers. This individual behavior applied by each node leads to the collective formation of gradient fields between content subscribers and content providers. Therefore, content routing simply sums up to follow the steepest slope along these gradient fields to reach subscribers who are located at the minima of the field. Via real traces analysis and simulation, we demonstrate the existence and relevance of such gradient field and show routing performance improvements when compared to classical routing protocols previously defined for information routing in DTN
    corecore